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Statistical Equilibrium States and Long-Time
Dynamics for a Transport Equation
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Statistical equilibrium states for a. linear transport equation were defined in a
previous work. We consider here the two-dimensional case: we show that under
some mild assumptions these equilibrium states actually describe the long-time
dynamics of the system.
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1. INTRODUCTION

We shall consider in this paper the linear transport equation

. p:+V-(pu}=0 on Q
(7) {pw, X) = po(x)

where Q is a bounded, connected, and regular open domain of R? [we
shall assume dx(2)=1 for simplicity]; u(x) is a given incompressible
(V-u=0) velocity field in C'(£2) which satisfies u-n=0 on 3R (n is the
normal unit vector at the boundary 8€2); and p(¢, x) is a scalar function.

It is well known that for any given p,(x) in L=(€), the equation ()
has a unique weak solution p(t, x) given by p(t, X) = po(@, '(x)), where ¢,
is the Lagrangian flow associated to u:

ﬁ ¢I(x) = U((P,(X))

dt
Po(x)=x
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Since u is incompressible, @,: Q — Q conserves the Lebesgue measure dx.
We denote by @, the flow on L*(£2) defined by (7 ):

p(t, x) = (D, po)(x)

We will investigate here the long-time behavior of this flow. It is easily
observed that besides some degenerate cases (mainly the case where u is the
velocity field of a solid-body rotation), the solution of () undergoes
small-scale oscillations and converges (in a weak sense), when ¢ goes to
infinity, toward some final state. We will give here a mathematical proof. of
the convergence of the flow, and show that the final state is accurately
described as a statistical equilibrium state, according to the theory given in
ref. 2.

Although this problem is interesting in itself, it is enlightening to
consider it in the context of 2D turbulence: equation () describes the par-
ticular case of a passive scalar convected by a frozen velocity field. Our
result points out a simple example where the “topological invariants” (such
as the number of patches or holes) are clearly irrelevant to the long-time
behavior. And we may conjecture that these invariants have no influence
on the final state in the case of the 2D Euler system.

2. STATISTICAL EQUILIBRIUM STATES FOR ()

As previously noticed,’® () belongs to a class of equations to which
a statistical equilibrium theory can be applied. Therefore to any given py(x)
in L*(£2) we can associate a statistical equilibrium state which is a Young
measure v* (see ref. 2 and below). We will prove in the following section
that, under some mild assumptions on the field u, the Young measure v*
describes also the long-time dynamics of the system. Thus, that, in this
particular case, a precise link between the long-time dynamics and the
statistical equilibrium theory is established.

We refer to ref. 2 for a detailed presentation of the theory; we shall
only indicate here the main recipe to get the equilibrium states.

2.1. Constants of the Motion for (7}

Let us denote by s the stream function of u [u=V x (yk), y =0 on
09, with k the unit vector normal to the plane].

For any bounded continuous function g(i, 2} on R x R, we define the
functional

F(p)=] sy(x), p(x)) dx
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One easily checks that F, is conserved by the flow @,. Indeed,

F(®.0)= sW(x). plo;(x))) dx

We make the change of variable x = ¢ ,(x’); since ¥ is the stream function
of u, we have Y(¢ =y(x'), so that F(®,p) = F(p).

2.2. The Variational Problem

Let us recall a few definitions.*>

e A Young measure v on @x[ —R, R] is a measurable mapping
x— v, from € into the space M,([—R, R]) of the Borel probability
measures on [ — R, R], endowed with the narrow topology (weak topology
associated to the continuous bounded functions). We denote by .# the
convex set of the Young measures on Q x [ —R, R]; .#, is endowed with
the narrow topology (of bounded measures on 2 x[ —R, R]) and it is a
compact space.

« To any measurable function p: @ - [ —R, R] (ie, pe LZ(2)), we

associate the Young measure J,: x = 9 ,,,, the Dirac mass at p(x).

o For p,eL%(R), we define the probability distribution 7z, on

(70, [ =] flpolx)) dx

and we denote by n the Young measure such that n, =n,, for all x.
o For ve .#g, the Kullback information functional I (v) is defined

byl4)
v)—f deL ( )dp

if v is absolutely continuous with respect to z

I(v)= +w if not

Let us suppose now that d, , — v (when ¢ — +00) in the space .#y, so
that

J, f0x @po(x)) dx = [ dx [ fix, 2) dvi(2)
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for any continuous bounded function f(x, 4). In particular, if we take
Sf(x, 1) =g(¥(x), 1), we get

J, dx [ g0 Dy v (=] gW(x), polx)) dx (1)

for any continuous bounded function g(y, A).

We denote by & the subset of .#; composed of the Young measures
satisfying (1). & is convex, compact, and nonempty.

Now, following the approach given in ref. 2, the equilibrium state v*
is defined as the solution of the variational problem

(VP)  I(v*)=minI(v)

ved

Since I, is a (positive) convex lower-semicontinuous functional on .#;
which is strictly convex on {v: I.(v) < +oo}, (V.P.) has always a solution,
which is unique if 7, is not identical to + o0 on &.

We describe now the solution of this variational problem.

2.3. The Young Measure ¥

The functional g(y, A)—»jg g(Y(x), po(x)) dx defines a Borel prob-
ability measure on R x R, whose first projection is the image measure P of
dx by ¢, ie.,

[ swx)) dx={ gw) aPw)
Q

Therefore, by a general theorem,'" there is a unique Young measure
¥ —{, on RxR, such that

[, 8000, po(x)) dx = [ dP() [ (v, 1) dCy(2)

The Young measure 7¥ on 2 x [ —R, R] is now defined by n¥={,,, ae.
(almost everywhere) in 2.

Obviously #¥ belongs to &, and the solution of (V.P.)
straightforwardly follows from the following lemma, whose proof is easy.

Lemma. Let v be any Young measure in &; then we have I(v) =
Ly(v)+ I(n").

Therefore, if I(n%) < 40, n¥ is the unique solution of (V.P.).
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Remark. We can easily check that the condition I (n%)< +o0 is
satisfied if p, takes a finite number of values, but we do not know whether
it is always satisfied. If I(n¥) = +o00, =¥ is still a solution of (V.P.), but it
is no longer unique.

3. LONG-TIME DYNAMICS

It is a general underlying assumption in statistical mechanics that the
equilibrium state describes, in some sense, the long-time dynamics of the
system. More precisely, we expect here that 5¢,,,0—>n"’ (when t — ) in
the space .

We prove now that this is true, under some mild assumptions on the
velocity field u (which mainly consists in discarding the degenerate case of
a solid-body rotation).

3.1. Preliminary Assumptions on v

e The stream function s varies from 0 (value taken at the boundary
002) to its maximum value ,, >0, which is reached at a unique point
x*eQ.

o VY(x)#0, for all x #x*, xeQ.

o For all y, 0<y <y, the set T, ={xe: Y(x)=y} is a closed
regular curve. We denote by do the superficial measure on X, and by
do, =do/|V{| the ¢ -invariant measure.

e We denote by T, = j £, do, the time needed to cover 2,. We assume
that T, is a regular function of Y on the interval [0, y,,[; it is integrable
since

LW T, dy = L“’m ay Lw do, = L) dx=1

We can now state our result.

Theorem. Let us assume that, besides the above assumptions, the
following hyp_othesis (H) holds:

o () ()

¥
Then, for any p,e L (£2), we have

zc>0 for 0y <y,

S0~ ®¥ i the space g
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Proof. Let us first clear up the meaning of the hypothesis (H), which
is a priori rather obscure. With this aim, let us take Q = D(0, z~'7?), disk
of radius n~'/ centered at 0, and ¥ = y(r), a radially symmetric function.
Let us denote by a(r) = —y/'(r)/r the angular velocity of the motion on the
circle of radius r. Elementary calculations give

(o g
o'(r) = =273 <J;Mr) T, dlﬁ) E (T_i>

so that (H) is written [a'(r)] 2 ae>0 for 0 <r<n 12

The proof of the theorem is in two steps. First we prove the result for
a disk and a radially symmetric motion (proposition below), next we
deduce the general case by an appropriate transformation.

Proposition. Let Q=D(0, z~'?) and  be radially symmetric. Let
us suppose that |a'(r)] Za,>0 for 0 <r <z =" Then for any pye LE(Q2),
we have

Op,py———— m¥  in the space

(r— o)

Proof. Let us first remark that it suffices to show that

Loy /3 =K%, [

for any smooth, compactly supported f(x, 1) on 2 x R.

We may now prove the result for a continuous p, with compact
support in £2: indeed, let poe L=(2) and f as above; then for any ¢>0
there exists pg continuous with compact support such that

lpo—poll Loy <€

and so
1<0pypys J7 =By [P < Kyt
where K is the Lipschitz constant of f'in the second variable, as well as
Ka¥, > —<ad, f1 <Kpe

with ¥ associated to p¢.
We thus obtain

|<5¢,/)0,f> —<n¢sf>' <2Kf8+|<6¢’,pssf> —<n5¢af>|

From now on we suppose g, continuous with compact support.
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Let /™" be the following partition of £\{0}:
A" ={ A, 0<k<m, 0< j<n}

where A" is the set of those points whose polar coordinates (r; 8) satisfy

ﬁ<0<2(k+1)n
m m
J <r<]+1

H\/; 71\/7_Z

(the first inequality on the radius being strict for j=0).
Define pg*" on Q\{0} b

1 .
po(x) = ”,"J p(x')dx" if xedy)
|4 :

and /™" in the same way.

It is obvious that | py— pg5""ll - and {| f — f™"| ., both converge to 0 as
m and » tend to infinity.

One easily sees that

|<5¢’,/)o’f> _<n¢af>l
KBy ppns S™ =KW s S I A2 NS =™ oo + 2K, 00— 25" | 0

For fixed m, n we shall give an upper bound for

Lim sup [{dg, ma, [™"> — (o fy|

1 — o0

One has

CBogns [ = zj Fr (e s (07N (X)) dX

man
I\.

=% e

ikt AL Nes (A

f'ﬂ n(xk j, pm "(xi‘j) dx

", "
where x,. ; is any fixed point in 4}"/, so

<5(b p’"" m.n> — Z IA:"j" A (pl Am n)l fm n(x k> p:)n n( ’j))

ik.j
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On the other hand,

(g Sy =] dx TM J, 7 pnx)) doyi)

Am nI
k! m, n m.n
=) —=f (X, > PO (X4 )
ik, j

where |[A| =dx(A).
Hence

< Bapypins S0y — Kb, S ]
<Iflle Y

ik, j

| ’”"

IA:n "f\(p, I(Am n)l

We shall now use the following lemma, whose proof will be given later.

Lemma. Under the same hypotheses as in the proposition, one has

m, " m, |AZ".’" C
LIE sup A7 o (A — p S
We deduce from this lemma that
M ni,n m.n C C
Lim sup [{d g, mn, [™"> =Ll s [N <N e Y 5=== I flln
= onmton

and that Vm, n> 0,
Lim sup [{Jg,,, /> — <%, [

{— oG
c m,n mn
S N+ 21 =S + 2K, po = P51 o

which concludes the proof of the proposition.

Proof. Since |a'(r)| Zay>0, the angular velocity is either strictly
increasing or strictly decreasing with the radius. It follows that ¢; '(A"’ 5
will sw1rl around the origin as ¢ increases.

x has (r, 8) as polar coordinates, ¢, '(x) will be represented by
(r, 0 oc( ) t). Let us compute the area of AT el (AZf 7). This set is a
union of several connected components, all but at most two of them being
“complete.” The evaluation of the area of one of those C, ,,,, (see Fig. 1)
gives

n r3
Cornl =t [l —a(r)l rdr 42 [ lors) —or)| r dr
r r2
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Fig. 1. Connected component C, ,, ,, of ¢, (AL{') N A"

Let us now suppose a(r) increasing (the decreasing case may be treated in
the same way). Let us compute

zjrl (a(r)—a(r,)) rdr

Since

r-atar—o|e(Z)eo(2)]

a straightforward calculation gives

tJ: {alr)—oafr))) rdr=1ta’ (n \1/7_[> n\j/,_, (rz—zi‘l)'+ 0 <t (r2;r|)“>

and also

t.[r3 (ars)—a(r)) rdr

! J j (rs=ry)? (rs—r)?
"“(nﬁ>nﬁ 2 ro(ite)

On the other hand, from the relationships

Ha(rs) —olry)) =~
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and
Ha(rs) —alry))=—
one easily gets

2n < 1 )
fo—ry=——F7=+ 0| —
mite!'(jin \/;z) mnit

and the same for ry—r,.
So

> J 1
Gyl = 472 +0( 72
e n/nm*t (jin ﬁ) m*n’t

Now the number of connected components of 475" ¢, (A7) is equal to

K | e v DA A

so that

2j 1
IAnxlxn¢l I(Amn)l ’;]7+0< 25>+0<__7 )

mn- mn n*n’t
but |47 =(2j+ 1)/mn?, hence
k,j j

non
|45 j
m

C C

S5+
n'm’>  mt

|Am"m(P, (Athn)I_

which concludes the lemma.

Now, to prove the theorem, we construct an area-preserving homeo-
morphism @: Q — D(0, n~'/?), which transforms the motion into a radially
symmetric one.

We proceed as follows.

+ We define the function

- )
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o We fix an origin O, on each streamline X, such that y - O, is a
continuous curve.

» For xe X, ©(x) is located on the circle of radius r(y), with polar
angle (2/T,) {3, do,.

Due to our particular choice of (i), we easily check that @ is an area-
preserving homeomorphism; and &(¢,) gives a uniform circular motion on
each circle of radius r(y), with the angular speed a(r(¥))=2r/T,, from
which we obtain

L { (b 2.4 /1
2o ([ ) 5 (8

The theorem then straightforwardly follows from the proposition.
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