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Statistical equilibrium states for a linear transport equation were defined in a 
previous work. We consider here the two-dimensional case: we show that under 
some mild assumptions these equilibrium states actually describe the long-time 
dynamics of the system. 
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1. I N T R O D U C T I O N  

We shall consider in this paper the linear transport equation 

f p , + V . ( p u ) = 0  onl2  (~) 
~p(0, x) = po(x) 

where ~2 is a bounded, connected, and regular open domain of ~2 [we 
shall assume dx(O)=  1 for simplicity]; u(x) is a given incompressible 
( V . u = 0 )  velocity field in C~(~) which satisfies u . n = 0  on OI2 (u is the 
normal unit vector at the boundary OO); and p(t, x) is a scalar function. 

It is well known that for any given po(X) in L~ the equation ( ~ )  
has a unique weak solution p(t, x) given by p(t, x) =p0(~p71(x)), where q~, 
is the Lagrangian flow associated to u: 

{ ~ ~o,(x) a = u(~,,(x)) 

~o0(x) = x 
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Since u is incompressible, ~0,:/2 ~ / 2  conserves the Lebesgue measure dx. 
We denote by @, the flow on L~176 defined by (~--): 

p(t, X) = (~,po)(X) 

We will investigate here the long-time behavior of this flow. It is easily 
observed that besides some degenerate cases (mainly the case where u is the 
velocity field of a solid-body rotation), the solution of (3-) undergoes 
small-scale oscillations and converges (in a weak sense), when t goes to 
infinity, toward some final state. We will give here a mathematical proof, of 
the convergence of the flow, and show that the final state is accurately 
described as a statistical equilibrium state, according to the theory given in 
ref. 2. 

Although this problem is interesting in itself, it is enlightening to 
consider it in the context of 2D turbulence: equation (J-) describes the par- 
ticular case of a passive scalar convected by a frozen velocity field. Our 
result points out a simple example where the "topological invariants" (such 
as the number of patches or holes) are clearly irrelevant to the long-time 
behavior. And we may conjecture that these invariants have no influence 
on the final state in the case of the 2D Euler system. 

2. STAT IST ICAL  E Q U I L I B R I U M  STATES FOR (~-) 
As previously noticed, (2) (~-) belongs to a class of equations to which 

a statistical equilibrium theory can be applied. Therefore to any given po(x) 
in L~(Y2) we can associate a statistical equilibrium state which is a Young 
measure v* (see ref. 2 and below). We will prove in the following section 
that, under some mild assumptions on the field u, the Young measure v* 
describes also the long-time dynamics of the system. Thus, that, in this 
particular case, a precise link between the long-time dynamics and the 
statistical equilibrium theory is established. 

We refer to ref. 2 for a detailed presentation of the theory; we shall 
only indicate here the main recipe to get the equilibrium states. 

2.1. Constants of the M o t i o n  for  (~-) 
Let us denote by ~ the stream function of u [ u = V x ( ~ k ) ,  ~ = 0  on 

0/2, with k the unit vector normal to the plane]. 
For any bounded continuous function g($, 2) on R x R, we define the 

functional 

Fg(p) --- f~ g(~k(x), p(x)) dx 
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One easily checks that Fg is conserved by the flow #~. Indeed, 

Fg(~ ,p)  = f~ g(r  p(cp,- '(x))) dx  

We make the change of variable x = ~p,(x'); since r is the stream function 
of u, we have ~b(cp,(x'))= ~b(x'), so that Fg(~,p)=Fg(p). 

2.2. The Var ia t iona l  Prob lem 

Let us recall a few definitions/2"5) 

�9 A Young measure v on K2x [ - R ,  R]  is a measurable mapping 
x - : , v  x from /2 into the space Mt([-R,R])  of the Borel probability 
measures on [ - R ,  R J, endowed with the narrow topology (weak topology 
associated to the continuous bounded functions). We denote by J/R the 
convex set of the Young measures o n / 2  x [ - R ,  R];  Jt'n is endowed with 
the narrow topology (of bounded measures on ~2 x [ - - R ,  R ] )  and it is a 
compact  space. 

�9 To any measurable function p: ~2-~ [ - R , R ]  (i.e., peL~163 we 
associate the Young measure 8/,: x ~ 3/,ix), the Dirac mass at p(x). 

�9 For  p0eL~(g2) ,  we define the probabili ty distribution n o on 
[ - R ,  R]  by 

(no,  f )  = fa f(po(X)) dx 

and we denote by n the Young measure such that n x = n o, for all x. 

�9 For  v~Jr n, the Kullback information functional I.(v) is defined 
by141 

I~(v)=Ldx~Ln\dnojdVx 

if v is absolutely continuous with respect to n 

IF(v)=  +oo if not 

Let us suppose now that ~*,,0--' v (when t ~  +oo) in the space A/R, so 
that 

fo r(x, fo dx f i(x, 
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for any continuous bounded function f (x ,  2). In particular, if we take 
f (x ,  2) =g(~k(x), 2), we get 

Ia dx I g(tp(x),2)dvx(2)=~a g(~k(x),po(x))dx (1) 

for any continuous bounded function g(~b, 2). 

We denote by 8 the subset of ~r composed of the Young measures 
satisfying (1). 8 is convex, compact, and nonempty. 

Now, following the approach given in ref. 2, the equilibrium state v* 
is defined as the solution of the variational problem 

(V.P.) I~(v*) = min I~(v) 
v~d~ 

Since I~ is a (positive) convex lower-semicontinuous functional on J/On 
which is strictly convex on {v: 1,~(v) < +oo}, (V.P.) has always a solution, 
which is unique if I~ is not identical to + ov on 8. 

We describe now the solution of this variational problem. 

2.3.  T h e  Y o u n g  M e a s u r e  n �9 

The functional g(~, 2 ) ~ a  g(~k(x),p0(x))dx defines a Borel prob- 
ability measure on R x R, whose first projection is the image measure P of 
dx by ~, i.e., 

~, g(r ax = I g(r aP(r 

Therefore, by a general theorem, (tJ there is a unique Young measure 
~, ---, ~, on ~ • R, such that 

~a g(~k(x), po(X)) dx = ~ dP(~b) ~g(~k, J.) d~,(2) 

The Young measure n r on g2 x [ - R ,  R] is now defined by n~ = (~,lxl a.e. 
(almost everywhere) in f2. 

Obviously n ~' belongs to 8, and the solution of (V.P.) 
straightforwardly follows from the following lemma, whose proof is easy. 

I . emma.  Let v be any Young measure in o~; then we have I,~(v)= 
4,(v) +1,~(~r 

Therefore, if I~(rc ~') < + ~ ,  n ~' is the unique solution of (V.P.). 
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R e m a r k .  We can easily check that the condition I,~(n r < +oo is 
satisfied if Po takes a finite number of values, but we do not know whether 
it is always satisfied. If I,~(n r = + ~ ,  n ~ is still a solution of (V.P.), but it 
is no longer unique. 

3. L O N G - T I M E  D Y N A M I C S  

It is a general underlying assumption in statistical mechanics that the 
equilibrium state describes, in some sense, the long-time dynamics of the 
system. More precisely, we expect here that fi,~,po---,n q' (when t--+ ~ )  in 
the space J/n- 

We prove now that this is true, under some mild assumptions on the 
velocity field u (which mainly consists in discarding the degenerate case of 
a solid-body rotation). 

3.1. Prel iminary Assumptions on u 

�9 The stream function ~b varies from 0 (value taken at the boundary 
0/2) to its maximum value ~ , , > 0 ,  which is reached at a unique point 
x* ~/2. 

�9 V@(x)#O, for all x:~x*,  x~ / ] .  

�9 For all if, O~<r the set Z ~ , = { x ~ :  qJ(x)=ff} is a closed 
regular curve. We denote by do the superficial measure on Zq,, and by 
d ~  -- dG/IVq~I the ~o,-invariant measure. 

�9 We denote by T~, = ~z,~ daq, the time needed to cover Zv,. We assume 
that Tr is a regular function of qJ on the interval [0, ft , ,[ ;  it is integrable 
since 

Tr d~J = da q, = d x  = 1 
"0  " 0  "LZq, 

We can now state our result. 

Theorem. Let us assume that, besides the above assumptions, the 
following hyp.othesis (H) holds: 

( [ r  \~/a ~ ( 1 , )  
(H) ",'~, T ~ d @ )  ~ >_-c>O for O<~@<~'m 

Then, for any p0~L~(/2) ,  we have 

8~,po t, ~ ~ ) ,  n ~' in the space JCn 
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Proof. Let us first clear up the meaning of the hypothesis (H), which 
is apriori rather obscure. With this aim, let us take ~ =D(0 ,  n-I~2), disk 
of radius n -l/'- centered at 0, and ~ = ~(r), a radially symmetric function. 
Let us denote by 0~(r) = -~'(r)/r the angular velocity of the motion on the 
circle of radius r. Elementary calculations give 

(f~"' ) ' / 2 d (  1 ) _ _  
~'(r) = --2n 3/2 \'r T~, d~, d~, T~, 

so that (H) is written I~'(,')1 ~>0~o>0 for O<r~n -1/2 
The proof  of the theorem is in two steps. First we prove the result for 

a disk and a radially symmetric motion (proposition below), next we 
deduce the general case by an appropriate transformation. 

Proposition. Let f2 =D(0,  n -~/2) and ~ be radially symmetric. Let 
us suppose that [0d(r)l >/0% > 0 for 0 < r ~< n -x/2. Then for any Po ~ L~>(f2), 
we have 

6~,po ~,- o~) ) n~ in the space -////n 

Proof. Let us first remark that it suffices to show that 

(d.,po, f )  --* <ng', f )  

for any smooth, compactly supported f (x ,  2) on f2 x R. 
We may now prove the result for a continuous Po with compact 

support in f2: indeed, let pozL~ and f as above; then for any e > 0 
there exists pg continuous with compact support such that 

Ilpo -pg II L'(~)~< 

and so 

l<6,~,p0, f )  - <6r f >  I <<.Kse 

where K I is the Lipschitz constant o f f  in the second variable, as well as 

[<n~,f> -<n~, f>l ~ Kse 

with n~ associated to p~. 
We thus obtain 

] (a~,p 0, f )  - < ng', f> [  ~< 2Kfe + I (6~,va, f >  -- < n~, f ) [  

From now on we suppose Po continuous with compact support. 
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Let o4 ..... be the following partition of I2\{0}' 

d . . . .  = {A"k'~', 0 <~k <m,  0 ~<j< n} 

where A~.:~' is the set of those points whose polar coordinates (r, 0) satisfy 

j ~< _ j + l  
" - - - - =  --~. r < .  

(the first inequality on the radius being strict for j = 0). 
Define pg"" on I2\{0} by 

II1,11 t~l, I1 po (X)=lAg,,~, I z2p(x') dx' if xeAk,  J 

and f ...... in the same way. 
n l ,  n It is obvious that I lPo-Po I1~ and I t f - f  ..... I1~ both converge to 0 as 

m and n tend to infinity. 
One easily sees that 

l(5~,,,o, f )  - ( n ~ , f ) [  

~1(5r , f  .... ) - - (  n~ f ..... )l + 2  I l f - f  ..... 1 [ o o + 2 K f l l p o - p ' ~ ' " l [  

For fixed m, n we shall give an upper bound for 

m tl  Limsup  4 5  ......... f ~ " r . . . . . . . .  . ~ - ,&  , J  ,---<,~ . . . . . . .  J 21 
I ~o0  

One has 

( •  ,.. f . , .n  \ I fm'niX ~, ,0.  , j ,, = ~ p ; ; " n ( ~ t ' ( X ) )  d x  k,j a~:J ' J  , k.y, 

_ ~ '  f c . , . , , t  x - , ~  JA . . . . . . .  ' ..... ~ ~ k.j,  p g " " ( x , . A  d x  
i , K , j  i.j ~ t  (Ak.'j  ) 

where Xk.y is any fixed point in A~" 7, so 

l / d m ,  n~l l,'m, n( X m , n  
< g ~ , , p ; , , , , , f  ...... >= Y. la','.')"c~q,. , - . , j , , .  , , . j ,  po  ( x , . A )  

i ,k,j  
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On the other hand, 

( *  " " fa .... 1 f r  7r ..... j .~ = dx - -  f .... (x, pg""(x')) daq,(x') 

[A [rtl"/I 

= ~ ~ f  .... (x~.,j, pg""(x,,j)) 
i , k , j  

where IAI = dx(A). 
Hence 

- < l r  ..... f ' > l  I < 6~,pg,.., f . . . .  > ~ m .  

~<llfl[~ ~ IA,.j m~o, , . . j , . j , , -  m 

We shall now use the following lemma, whose proof  will be given later. 

La m ina .  Under the same hypotheses as in the proposition, one has 

nl, n C 
im -1 .... [Ak.J[ ~< _ 

L sup [Ai")"ncp, (Ak,j) l -  m n2m 2 

We deduce from this lemma that 

C C 
Limsup [(fir ..... ) - . [nq ' . , . . , j f  ...... .,'~1 ~< [If[[o~ ~ - [[f[[~, 

t ~ oo i , k , j  n2 / ' n2  n 

and that u n > O, 

Lim sup [(6~,po, f )  - ( rc~', f )  I 

C 
~<-- Hill ~ + 2 [ [ f - f " ' " [ [  oo + 2KI HPo -P;""[I  oo 

n 

which concludes the proof of the proposition. 

Proof.. Since [0((r)[ ~>0%>0, the angular velocity is either strictly 
- - l [ A m ,  n ~ increasing or strictly decreasing with the radius. It follows that ~o, ~--k,j, 

will swirl around the origin as t increases. 
If x has (r, 0) as polar coordinates, ~o;-l(x) will be represented by 

m n - - l [ A m , n  ~ (r, O - ~ ( r ) t ) .  Let us compute the area of Ai, ) c~ ~o, ~"k,j J' This set is a 
union of several connected components, all but at most two of them being 
"complete." The evaluation of the area of one of those Cr, n.r3 (see Fig. 1) 
gives 

f7 [C~,,r2,~31 = t  [o~(r)-~(rl)] r dr + t ~3 I~176 r dr 
I 2 
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1+1 0 

1 

2n 

~ r I 

r 3 

~1 m,n A m,n 2i n 20+ 1 ) n 
t (Ak , l )  .i,l m m 

Fig.  1. C o n n e c t e d  c o m p o n e n t  Cr~.r,..~ o f  "rt"--I( A'''~k.t J ~ A i ,  I ......" 

Let us now suppose e(r) increasing (the decreasing case may  be treated in 
the same way). Let us compute  

fr~ 2 t ( 0 t ( r )  - -  0 ~ ( r l )  ) r dr 

Since 

~176176 

a straightforward calculation gives 

tI~'-(o~(r)_o:(r,))rdr=te,(n__~)jnx/~ (r2-r,)'-2 (r2-rl) ) 
t 

and also 

fr 3 t (o~(r3) - o~(r)) r dr 
2 

J (r3--r')2 O(t(r3-r2)2~ 
, f i  ; / 

On the other hand, f rom the relationships 

2 ~  t(~(r2)--~(rl))------ 
m 
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and 

2 ~  
t ( ~ ( r 3 ) - - ~ ( r z ) ) = - -  

n7  

one easily gets 

2~ (,) 
r2--r '  - m t ~ , ( j / n  w/~i  + 0 

and the same for r 3 -7"2. 
So 

,c,,2r3, 4~2 J ( , )  
n ,,//-n m Z t & ( j / n ,J-n ) + 0 

m n - -  1 ( d  m , n  "~ Now the number of connected components of A~.) c~ ~0, ~--k,j J is equal to 

'E ~ j + ~  (,+)1 " ~(,,5) (") ~ \ t - ~ - - ~ j - - e  + O ( 1 ) = 2 n n ~  + 0  i~- + 0 ( 1 )  

so that 

]A,."')" c~ ~o, ~,ak, j / i  =- - r -~  + 0 + 0  
?/1-17 - 

m,tl  but IAk,j I = (2./'+ 1)~ran-, hence 

I A . . . . .  ~ ,  - 1 ~ A  . . . . . . . .  IA:;':;'I C C ~< + - -  
" ~ i , j  ' '  ~O t ~ ' ~ k , j  11 m 1121"112 m2t 

which concludes the lemma. 
Now, to prove the theorem, we construct an area-preserving homeo- 

morphism O: ~ ~ / ) ( 0 ,  n-i/2), which transforms the motion into a radially 
symmetric one. 

We proceed as follows. 

�9 We define the function 
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�9 We fix an origin 04, on each streamline Z'~ such that ~--* Oq, is a 
continuous curve. 

�9 For  x~s O(x) is located on the circle of radius r(~), with polar 
angle (2n/Tr ~o~ dar 

Due to our particular choice of r(~,), we easily check that 0 is an area- 
preserving homeomorphism; and 0(~0,) gives a uniform circular motion on 
each circle of radius r(~), with the angular speed ~ ( r (~ , ) )=2n /T , ,  from 
which we obtain 

='(,'(if)) = - 2 n  3/2 T~,d~) -d~ 

The theorem then straightforwardly follows from the proposition. 
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