Statistical Equilibrium States and Long-Time Dynamics for a Transport Equation

Julien Michel¹ and Raoul Robert²

Received April 5, 1995; final September 1, 1995

Statistical equilibrium states for a linear transport equation were defined in a previous work. We consider here the two-dimensional case: we show that under some mild assumptions these equilibrium states actually describe the long-time dynamics of the system.

KEY WORDS: Statistical equilibrium states; transport equation; long-time dynamics.

1. INTRODUCTION

We shall consider in this paper the linear transport equation

$$(\mathcal{T}) \quad \begin{cases} \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0 & \text{on } \Omega\\ \rho(0, \mathbf{x}) = \rho_0(\mathbf{x}) \end{cases}$$

where Ω is a bounded, connected, and regular open domain of \mathbb{R}^2 [we shall assume $d\mathbf{x}(\Omega) = 1$ for simplicity]; $\mathbf{u}(\mathbf{x})$ is a given incompressible $(\nabla \cdot \mathbf{u} = 0)$ velocity field in $C^1(\overline{\Omega})$ which satisfies $\mathbf{u} \cdot \mathbf{n} = 0$ on $\partial \Omega$ (**n** is the normal unit vector at the boundary $\partial \Omega$); and $\rho(t, \mathbf{x})$ is a scalar function.

It is well known that for any given $\rho_0(\mathbf{x})$ in $L^{\infty}(\Omega)$, the equation (\mathcal{F}) has a unique weak solution $\rho(t, \mathbf{x})$ given by $\rho(t, \mathbf{x}) = \rho_0(\varphi_t^{-1}(\mathbf{x}))$, where φ_t is the Lagrangian flow associated to **u**:

$$\begin{cases} \frac{d}{dt} \varphi_t(\mathbf{x}) = \mathbf{u}(\varphi_t(\mathbf{x})) \\ \varphi_0(\mathbf{x}) = \mathbf{x} \end{cases}$$

¹ École Normale Supérieure de Lyon, F-69364 Lyon, France.

² CNRS, Laboratoire d'Analyse Numérique, Université Lyon 1, F-69622 Villeurbanne Cedex, France.

Since **u** is incompressible, $\varphi_i: \Omega \to \Omega$ conserves the Lebesgue measure $d\mathbf{x}$.

We denote by Φ_t the flow on $L^{\infty}(\Omega)$ defined by (\mathcal{T}) :

$$\rho(t, \mathbf{x}) = (\boldsymbol{\Phi}_t \rho_0)(\mathbf{x})$$

We will investigate here the long-time behavior of this flow. It is easily observed that besides some degenerate cases (mainly the case where **u** is the velocity field of a solid-body rotation), the solution of (\mathcal{T}) undergoes small-scale oscillations and converges (in a weak sense), when t goes to infinity, toward some final state. We will give here a mathematical proof of the convergence of the flow, and show that the final state is accurately described as a statistical equilibrium state, according to the theory given in ref. 2.

Although this problem is interesting in itself, it is enlightening to consider it in the context of 2D turbulence: equation (\mathcal{T}) describes the particular case of a passive scalar convected by a frozen velocity field. Our result points out a simple example where the "topological invariants" (such as the number of patches or holes) are clearly irrelevant to the long-time behavior. And we may conjecture that these invariants have no influence on the final state in the case of the 2D Euler system.

2. STATISTICAL EQUILIBRIUM STATES FOR (*T*)

As previously noticed, ⁽²⁾ (\mathscr{T}) belongs to a class of equations to which a statistical equilibrium theory can be applied. Therefore to any given $\rho_0(\mathbf{x})$ in $L^{\infty}(\Omega)$ we can associate a statistical equilibrium state which is a Young measure v^* (see ref. 2 and below). We will prove in the following section that, under some mild assumptions on the field **u**, the Young measure v^* describes also the long-time dynamics of the system. Thus, that, in this particular case, a precise link between the long-time dynamics and the statistical equilibrium theory is established.

We refer to ref. 2 for a detailed presentation of the theory; we shall only indicate here the main recipe to get the equilibrium states.

2.1. Constants of the Motion for (\mathcal{T})

Let us denote by ψ the stream function of $\mathbf{u} [\mathbf{u} = \nabla \times (\psi \mathbf{k}), \psi = 0$ on $\partial \Omega$, with \mathbf{k} the unit vector normal to the plane].

For any bounded continuous function $g(\psi, \lambda)$ on $\mathbb{R} \times \mathbb{R}$, we define the functional

$$F_g(\rho) = \int_{\Omega} g(\psi(\mathbf{x}), \rho(\mathbf{x})) d\mathbf{x}$$

One easily checks that F_g is conserved by the flow Φ_i . Indeed,

$$F_g(\Phi,\rho) = \int_{\Omega} g(\psi(\mathbf{x}), \rho(\varphi_i^{-1}(\mathbf{x}))) \, d\mathbf{x}$$

We make the change of variable $\mathbf{x} = \varphi_i(\mathbf{x}')$; since ψ is the stream function of **u**, we have $\psi(\varphi_i(\mathbf{x}')) = \psi(\mathbf{x}')$, so that $F_g(\Phi_i, \rho) = F_g(\rho)$.

2.2. The Variational Problem

Let us recall a few definitions.^(2,5)

• A Young measure ν on $\Omega \times [-R, R]$ is a measurable mapping $\mathbf{x} \to \nu_{\mathbf{x}}$ from Ω into the space $M_1([-R, R])$ of the Borel probability measures on [-R, R], endowed with the narrow topology (weak topology associated to the continuous bounded functions). We denote by \mathcal{M}_R the convex set of the Young measures on $\Omega \times [-R, R]$; \mathcal{M}_R is endowed with the narrow topology (of bounded measures on $\Omega \times [-R, R]$) and it is a compact space.

• To any measurable function $\rho: \Omega \to [-R, R]$ (i.e., $\rho \in L^{\infty}_{R}(\Omega)$), we associate the Young measure $\delta_{\rho}: \mathbf{x} \to \delta_{\rho(\mathbf{x})}$, the Dirac mass at $\rho(\mathbf{x})$.

• For $\rho_0 \in L^{\infty}_R(\Omega)$, we define the probability distribution π_0 on [-R, R] by

$$\langle \pi_0, f \rangle = \int_{\Omega} f(\rho_0(\mathbf{x})) \, d\mathbf{x}$$

and we denote by π the Young measure such that $\pi_x = \pi_0$, for all x.

• For $v \in \mathcal{M}_R$, the Kullback information functional $I_{\pi}(v)$ is defined by⁽⁴⁾

$$I_{\pi}(\nu) = \int_{\Omega} d\mathbf{x} \int \operatorname{Ln}\left(\frac{d\nu_{x}}{d\pi_{0}}\right) d\nu_{\mathbf{x}}$$

if v is absolutely continuous with respect to π

$$I_{\pi}(v) = +\infty$$
 if not

Let us suppose now that $\delta_{\phi_{t}\rho_{0}} \rightarrow v$ (when $t \rightarrow +\infty$) in the space \mathcal{M}_{R} , so that

$$\int_{\Omega} f(\mathbf{x}, \boldsymbol{\Phi}, \boldsymbol{\rho}_0(\mathbf{x})) \, d\mathbf{x} \to \int_{\Omega} d\mathbf{x} \int f(\mathbf{x}, \lambda) \, dv_{\mathbf{x}}(\lambda)$$

for any continuous bounded function $f(\mathbf{x}, \lambda)$. In particular, if we take $f(\mathbf{x}, \lambda) = g(\psi(\mathbf{x}), \lambda)$, we get

$$\int_{\Omega} d\mathbf{x} \int g(\psi(\mathbf{x}), \lambda) \, d\nu_{\mathbf{x}}(\lambda) = \int_{\Omega} g(\psi(\mathbf{x}), \rho_0(\mathbf{x})) \, d\mathbf{x} \tag{1}$$

for any continuous bounded function $g(\psi, \lambda)$.

We denote by \mathscr{E} the subset of \mathscr{M}_R composed of the Young measures satisfying (1). \mathscr{E} is convex, compact, and nonempty.

Now, following the approach given in ref. 2, the equilibrium state v^* is defined as the solution of the variational problem

(V.P.)
$$I_{\pi}(\nu^*) = \min_{\nu \in \mathscr{E}} I_{\pi}(\nu)$$

Since I_{π} is a (positive) convex lower-semicontinuous functional on \mathcal{M}_R which is strictly convex on $\{v: I_{\pi}(v) < +\infty\}$, (V.P.) has always a solution, which is unique if I_{π} is not identical to $+\infty$ on \mathscr{E} .

We describe now the solution of this variational problem.

2.3. The Young Measure π^{ψ}

The functional $g(\psi, \lambda) \rightarrow \int_{\Omega} g(\psi(\mathbf{x}), \rho_0(\mathbf{x})) d\mathbf{x}$ defines a Borel probability measure on $\mathbb{R} \times \mathbb{R}$, whose first projection is the image measure P of $d\mathbf{x}$ by ψ , i.e.,

$$\int_{\Omega} g(\psi(\mathbf{x})) \, d\mathbf{x} = \int g(\psi) \, dP(\psi)$$

Therefore, by a general theorem,⁽¹⁾ there is a unique Young measure $\psi \to \zeta_{\psi}$ on $\mathbb{R} \times \mathbb{R}$, such that

$$\int_{\Omega} g(\psi(\mathbf{x}), \rho_0(\mathbf{x})) \, d\mathbf{x} = \int dP(\psi) \int g(\psi, \lambda) \, d\zeta_{\psi}(\lambda)$$

The Young measure π^{ψ} on $\Omega \times [-R, R]$ is now defined by $\pi_x^{\psi} = \zeta_{\psi(x)}$ a.e. (almost everywhere) in Ω .

Obviously π^{ψ} belongs to \mathscr{E} , and the solution of (V.P.) straightforwardly follows from the following lemma, whose proof is easy.

Lemma. Let ν be any Young measure in \mathscr{E} ; then we have $I_{\pi}(\nu) = I_{\pi^{\psi}}(\nu) + I_{\pi}(\pi^{\psi})$.

Therefore, if $I_{\pi}(\pi^{\psi}) < +\infty$, π^{ψ} is the unique solution of (V.P.).

Statistical Equilibrium States

Remark. We can easily check that the condition $I_{\pi}(\pi^{\psi}) < +\infty$ is satisfied if ρ_0 takes a finite number of values, but we do not know whether it is always satisfied. If $I_{\pi}(\pi^{\psi}) = +\infty$, π^{ψ} is still a solution of (V.P.), but it is no longer unique.

3. LONG-TIME DYNAMICS

It is a general underlying assumption in statistical mechanics that the equilibrium state describes, in some sense, the long-time dynamics of the system. More precisely, we expect here that $\delta_{\varphi_t\rho_0} \rightarrow \pi^{\psi}$ (when $t \rightarrow \infty$) in the space $\mathcal{M}_{\mathcal{R}}$.

We prove now that this is true, under some mild assumptions on the velocity field \mathbf{u} (which mainly consists in discarding the degenerate case of a solid-body rotation).

3.1. Preliminary Assumptions on u

• The stream function ψ varies from 0 (value taken at the boundary $\partial \Omega$) to its maximum value $\psi_m > 0$, which is reached at a unique point $\mathbf{x}^* \in \Omega$.

• $\nabla \psi(\mathbf{x}) \neq 0$, for all $\mathbf{x} \neq \mathbf{x}^*$, $\mathbf{x} \in \overline{\Omega}$.

• For all ψ , $0 \le \psi < \psi_m$, the set $\Sigma_{\psi} = \{\mathbf{x} \in \overline{\Omega}: \psi(\mathbf{x}) = \psi\}$ is a closed regular curve. We denote by $d\sigma$ the superficial measure on Σ_{ψ} , and by $d\sigma_{\psi} = d\sigma/|\nabla \psi|$ the φ_{t} -invariant measure.

• We denote by $T_{\psi} = \int_{\Sigma_{\psi}} d\sigma_{\psi}$ the time needed to cover Σ_{ψ} . We assume that T_{ψ} is a regular function of ψ on the interval $[0, \psi_m[$; it is integrable since

$$\int_{0}^{\psi_{m}} T_{\psi} d\psi = \int_{0}^{\psi_{m}} d\psi \int_{\Sigma_{\psi}} d\sigma_{\psi} = \int_{\Omega} d\mathbf{x} = 1$$

We can now state our result.

Theorem. Let us assume that, besides the above assumptions, the following hypothesis (H) holds:

(H)
$$\left(\int_{\psi}^{\psi_m} T_{\psi} d\psi\right)^{1/2} \left|\frac{d}{d\psi}\left(\frac{1}{T_{\psi}^2}\right)\right| \ge c > 0$$
 for $0 \le \psi < \psi_n$

Then, for any $\rho_0 \in L^\infty_R(\Omega)$, we have

$$\delta_{\Phi_t \rho_0} \xrightarrow[(t \to \infty)]{} \pi^{\psi}$$
 in the space \mathcal{M}_R

Michel and Robert

Proof. Let us first clear up the meaning of the hypothesis (H), which is a priori rather obscure. With this aim, let us take $\Omega = D(0, \pi^{-1/2})$, disk of radius $\pi^{-1/2}$ centered at 0, and $\psi = \psi(r)$, a radially symmetric function. Let us denote by $\alpha(r) = -\psi'(r)/r$ the angular velocity of the motion on the circle of radius r. Elementary calculations give

$$\alpha'(r) = -2\pi^{3/2} \left(\int_{\psi(r)}^{\psi_m} T_{\psi} \, d\psi \right)^{1/2} \frac{d}{d\psi} \left(\frac{1}{T_{\psi}^2} \right)$$

so that (H) is written $|\alpha'(r)| \ge \alpha_0 > 0$ for $0 < r \le \pi^{-1/2}$.

The proof of the theorem is in two steps. First we prove the result for a disk and a radially symmetric motion (proposition below), next we deduce the general case by an appropriate transformation.

Proposition. Let $\Omega = D(0, \pi^{-1/2})$ and ψ be radially symmetric. Let us suppose that $|\alpha'(r)| \ge \alpha_0 > 0$ for $0 < r \le \pi^{-1/2}$. Then for any $\rho_0 \in L^{\infty}_R(\Omega)$, we have

$$\delta_{\Phi_t \rho_0} \xrightarrow[(t \to \infty)]{} \pi^{\psi}$$
 in the space \mathcal{M}_R

Proof. Let us first remark that it suffices to show that

$$\langle \delta_{\Psi_t \rho_0}, f \rangle \rightarrow \langle \pi^{\psi}, f \rangle$$

for any smooth, compactly supported $f(\mathbf{x}, \lambda)$ on $\Omega \times \mathbb{R}$.

We may now prove the result for a continuous ρ_0 with compact support in Ω : indeed, let $\rho_0 \in L^{\infty}(\Omega)$ and f as above; then for any $\varepsilon > 0$ there exists ρ_0^{ε} continuous with compact support such that

$$\|\rho_0 - \rho_0^\varepsilon\|_{L^1(\Omega)} \leq \varepsilon$$

and so

$$|\langle \delta_{\varphi_t \rho_0}, f \rangle - \langle \delta_{\varphi_t \rho_0^{\varepsilon}}, f \rangle| \leq K_f \varepsilon$$

where K_f is the Lipschitz constant of f in the second variable, as well as

$$|\langle \pi^{\psi}, f \rangle - \langle \pi^{\psi}_{\varepsilon}, f \rangle| \leqslant K_{f} \varepsilon$$

with π_{ε}^{ψ} associated to ρ_{0}^{ε} .

We thus obtain

$$|\langle \delta_{\varPhi_l \rho_0}, f \rangle - \langle \pi^{\psi}, f \rangle| \leq 2K_f \varepsilon + |\langle \delta_{\varPhi_l \rho_0^{\varepsilon}}, f \rangle - \langle \pi_{\varepsilon}^{\psi}, f \rangle|$$

From now on we suppose ρ_0 continuous with compact support.

Statistical Equilibrium States

Let $\mathscr{A}^{m,n}$ be the following partition of $\Omega \setminus \{0\}$:

$$\mathscr{A}^{m,n} = \left\{ A_{k,j}^{m,n}, \, 0 \leq k < m, \, 0 \leq j < n \right\}$$

where $A_{k,j}^{m,n}$ is the set of those points whose polar coordinates (r, θ) satisfy

$$\begin{cases} \frac{2k\pi}{m} \leq \theta < \frac{2(k+1)\pi}{m} \\ \frac{j}{n\sqrt{\pi}} \leq r < \frac{j+1}{n\sqrt{\pi}} \end{cases}$$

(the first inequality on the radius being strict for j=0).

Define $\rho_0^{m,n}$ on $\Omega \setminus \{0\}$ by

$$\rho_0^{m,n}(\mathbf{x}) = \frac{1}{|A_{k,j}^{m,n}|} \int_{\mathcal{A}_{k,j}^{m,n}} \rho(\mathbf{x}') \, d\mathbf{x}' \qquad \text{if} \quad \mathbf{x} \in A_{k,j}^{m,n}$$

and $f^{m,n}$ in the same way.

It is obvious that $\|\rho_0 - \rho_0^{m,n}\|_{\infty}$ and $\|f - f^{m,n}\|_{\infty}$ both converge to 0 as m and n tend to infinity.

One easily sees that

$$\begin{aligned} |\langle \delta_{\varphi_{t}\rho_{0}}, f \rangle - \langle \pi^{\psi}, f \rangle| \\ \leqslant |\langle \delta_{\varphi_{t}\rho_{0}^{m,n}}, f^{m,n} \rangle - \langle \pi^{\psi}_{m,n}, f^{m,n} \rangle| + 2 \|f - f^{m,n}\|_{\infty} + 2K_{f} \|\rho_{0} - \rho_{0}^{m,n}\|_{\infty} \end{aligned}$$

For fixed m, n we shall give an upper bound for

$$\limsup_{t \to \infty} |\langle \delta_{\varphi_t \rho_0^{m,n}}, f^{m,n} \rangle - \langle \pi_{m,n}^{\psi}, f^{m,n} \rangle|$$

One has

$$\langle \delta_{\boldsymbol{\varphi}_{t}\rho_{0}^{m,n}}, f^{m,n} \rangle = \sum_{k,j} \int_{\mathcal{A}_{k,j}^{m,n}} f^{m,n}(\mathbf{x}_{k,j}, \rho_{0}^{m,n}(\boldsymbol{\varphi}_{t}^{-1}(\mathbf{x}))) d\mathbf{x}$$
$$= \sum_{i,k,j} \int_{\mathcal{A}_{i,j}^{m,n} \cap \boldsymbol{\varphi}_{t}^{-1}(\mathcal{A}_{k,j}^{m,n})} f^{m,n}(\mathbf{x}_{k,j}, \rho_{0}^{m,n}(\mathbf{x}_{i,j})) d\mathbf{x}$$

where $\mathbf{x}_{k,j}$ is any fixed point in $A_{k,j}^{m,n}$, so

$$\langle \delta_{\Phi_{t}\rho_{0}^{m,n}}, f^{m,n} \rangle = \sum_{i,k,j} |A_{i,j}^{m,n} \cap \varphi_{t}^{-1}(A_{k,j}^{m,n})| f^{m,n}(\mathbf{x}_{k,j}, \rho_{0}^{m,n}(\mathbf{x}_{i,j}))$$

On the other hand,

$$\langle \pi_{m,n}^{\psi}, f^{m,n} \rangle = \int_{\Omega} d\mathbf{x} \frac{1}{T_{\psi(\mathbf{x})}} \int_{\Sigma_{\psi(\mathbf{x})}} f^{m,n}(\mathbf{x}, \rho_0^{m,n}(\mathbf{x}')) \, d\sigma_{\psi}(\mathbf{x}')$$
$$= \sum_{i,k,j} \frac{|\mathcal{A}_{k,j}^{m,n}|}{m} f^{m,n}(\mathbf{x}_{k,j}, \rho_0^{m,n}(\mathbf{x}_{i,j}))$$

where $|A| = d\mathbf{x}(A)$. Hence

$$\begin{split} |\langle \delta_{\boldsymbol{\varphi}_{t} \boldsymbol{\rho}_{0}^{m,n}}, f^{m,n} \rangle - \langle \pi_{m,n}^{\psi}, f^{m,n} \rangle| \\ \leqslant \|f\|_{\infty} \sum_{i,k,j} \left| |A_{i,j}^{m,n} \cap \varphi_{t}^{-1}(A_{k,j}^{m,n})| - \frac{|A_{k,j}^{m,n}|}{m} \right| \end{split}$$

We shall now use the following lemma, whose proof will be given later. Lemma. Under the same hypotheses as in the proposition, one has

$$\lim_{t \to \infty} \sup_{t \to \infty} \left| |A_{i,j}^{m,n} \cap \varphi_t^{-1}(A_{k,j}^{m,n})| - \frac{|A_{k,j}^{m,n}|}{m} \right| \leq \frac{C}{n^2 m^2}$$

We deduce from this lemma that

 $\limsup_{\ell \to \infty} |\langle \delta_{\Phi_{\ell} \rho_0^{m,n}}, f^{m,n} \rangle - \langle \pi_{m,n}^{\psi}, f^{m,n} \rangle| \leq ||f||_{\infty} \sum_{i,k,j} \frac{C}{n^2 m^2} = \frac{C}{n} ||f||_{\infty}$

and that $\forall m, n > 0$,

$$\begin{split} \underset{t \to \infty}{\operatorname{Lim}} \sup_{t \to \infty} |\langle \delta_{\varphi_{t},\rho_{0}}, f \rangle - \langle \pi^{\psi}, f \rangle| \\ \leqslant \frac{C}{n} \|f\|_{\infty} + 2 \|f - f^{m,n}\|_{\infty} + 2K_{f} \|\rho_{0} - \rho_{0}^{m,n}\|_{\infty} \end{split}$$

which concludes the proof of the proposition.

Proof. Since $|\alpha'(r)| \ge \alpha_0 > 0$, the angular velocity is either strictly increasing or strictly decreasing with the radius. It follows that $\varphi_t^{-1}(A_{k,j}^{m,n})$ will swirl around the origin as t increases.

If x has (r, θ) as polar coordinates, $\varphi_t^{-1}(\mathbf{x})$ will be represented by $(r, \theta - \alpha(r) t)$. Let us compute the area of $A_{i,j}^{m,n} \cap \varphi_t^{-1}(A_{k,j}^{m,n})$. This set is a union of several connected components, all but at most two of them being "complete." The evaluation of the area of one of those C_{r_1, r_2, r_3} (see Fig. 1) gives

$$|C_{r_1,r_2,r_3}| = t \int_{r_1}^{r_2} |\alpha(r) - \alpha(r_1)| r \, dr + t \int_{r_2}^{r_3} |\alpha(r_3) - \alpha(r)| r \, dr$$

Fig. 1. Connected component C_{r_1, r_2, r_3} of $\varphi_t^{-1}(A_{k, l}^{m, n}) \cap A_{i, l}^{m, n}$.

Let us now suppose $\alpha(r)$ increasing (the decreasing case may be treated in the same way). Let us compute

$$t\int_{r_1}^{r_2} \left(\alpha(r) - \alpha(r_1)\right) r \, dr$$

Since

$$\alpha(r) - \alpha(r_1) = (r - r_1) \left[\alpha' \left(\frac{j}{n \sqrt{\pi}} \right) + O\left(\frac{1}{n} \right) \right]$$

a straightforward calculation gives

$$t \int_{r_1}^{r_2} (\alpha(r) - \alpha(r_1)) r \, dr = t \alpha' \left(\frac{j}{n\sqrt{\pi}}\right) \frac{j}{n\sqrt{\pi}} \frac{(r_2 - r_1)^2}{2} + O\left(t \frac{(r_2 - r_1)^2}{n}\right)$$

and also

$$t \int_{r_2}^{r_3} (\alpha(r_3) - \alpha(r)) r \, dr$$

= $t \alpha' \left(\frac{j}{n \sqrt{\pi}} \right) \frac{j}{n \sqrt{\pi}} \frac{(r_3 - r_2)^2}{2} + O\left(t \frac{(r_3 - r_2)^2}{n} \right)$

On the other hand, from the relationships

$$t(\alpha(r_2) - \alpha(r_1)) = \frac{2\pi}{m}$$

and

$$t(\alpha(r_3) - \alpha(r_2)) = \frac{2\pi}{m}$$

one easily gets

$$r_2 - r_1 = \frac{2\pi}{mt\alpha'(j/n\sqrt{\pi})} + O\left(\frac{1}{mnt}\right)$$

and the same for $r_3 - r_2$. So

$$|C_{r_1, r_2, r_3}| = 4\pi^2 \frac{j}{n\sqrt{\pi} m^2 t \alpha'(j/n\sqrt{\pi})} + O\left(\frac{1}{m^2 n^3 t}\right)$$

Now the number of connected components of $A_{i,j}^{m,n} \cap \varphi_i^{-1}(A_{k,j}^{m,n})$ is equal to

$$\frac{t}{2\pi} \left[\alpha \left(\frac{j+1}{n\sqrt{\pi}} \right) - \alpha \left(\frac{j}{n\sqrt{\pi}} \right) \right] + O(1) = \frac{t}{2\pi} \frac{1}{n\sqrt{\pi}} \alpha' \left(\frac{j}{n\sqrt{\pi}} \right) + O\left(\frac{t}{n^2} \right) + O(1)$$

so that

$$|A_{i,j}^{m,n} \cap \varphi_{\iota}^{-1}(A_{k,j}^{m,n})| = \frac{2j}{m^2 n^2} + O\left(\frac{1}{m^2 n^5}\right) + O\left(\frac{1}{m^2 n^3 t}\right)$$

but $|A_{k,j}^{m,n}| = (2j+1)/mn^2$, hence

$$\left| |A_{i,j}^{m,n} \cap \varphi_{\iota}^{-1}(A_{k,j}^{m,n})| - \frac{|A_{k,j}^{m,n}|}{m} \right| \leq \frac{C}{n^2 m^2} + \frac{C}{m^2 t}$$

which concludes the lemma.

Now, to prove the theorem, we construct an area-preserving homeomorphism $\Theta: \overline{\Omega} \to \overline{D}(0, \pi^{-1/2})$, which transforms the motion into a radially symmetric one.

We proceed as follows.

• We define the function

$$r(\psi) = \frac{1}{\sqrt{\pi}} \left(\int_{\psi}^{\psi_m} T_{\psi} \, d\psi \right)^{1/2}$$

788

Statistical Equilibrium States

• We fix an origin O_{ψ} on each streamline Σ_{ψ} such that $\psi \to O_{\psi}$ is a continuous curve.

• For $\mathbf{x} \in \Sigma_{\psi}$, $\Theta(\mathbf{x})$ is located on the circle of radius $r(\psi)$, with polar angle $(2\pi/T_{\psi}) \int_{O_{\psi}}^{\mathbf{x}} d\sigma_{\psi}$.

Due to our particular choice of $r(\psi)$, we easily check that Θ is an areapreserving homeomorphism; and $\Theta(\varphi_i)$ gives a uniform circular motion on each circle of radius $r(\psi)$, with the angular speed $\alpha(r(\psi)) = 2\pi/T_{\psi}$, from which we obtain

$$\alpha'(r(\psi)) = -2\pi^{3/2} \left(\int_{\psi}^{\psi_m} T_{\psi} \, d\psi \right)^{1/2} \frac{d}{d\psi} \left(\frac{1}{T_{\psi}^2} \right)$$

The theorem then straightforwardly follows from the proposition.

REFERENCES

- 1. M. Jirina, On regular conditional probabilities, Czech. Math. J. 9(3):445 (1959).
- J. Michel and R. Robert, Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law, *Commun. Math. Phys.* 159:195-215 (1994).
- 3. J. Michel, Thesis, Université Lyon 1 (1993).
- 4. S. R. S. Varadhan, Large deviations and applications, Ecole d'été de probabilité de Saint-Flour XV-XVII, 1985-1987.
- 5. L. C. Young, Generalized surfaces in the calculus of variations, Ann. Math. 43:84-103 (1942).

Communicated by J. L. Lebowitz