Statistical Equilibrium States and Long-Time Dynamics for a Transport Equation

Julien Michel ${ }^{1}$ and Raoul Robert ${ }^{2}$

Received April 5, 1995; final September 1, 1995

Abstract

Statistical equilibrium states for a linear transport equation were defined in a previous work. We consider here the two-dimensional case: we show that under some mild assumptions these equilibrium states actually describe the long-time dynamics of the system.

KEY WORDS: Statistical equilibrium states; transport equation; long-time dynamics.

1. INTRODUCTION

We shall consider in this paper the linear transport equation

$$
(\mathscr{T})\left\{\begin{array}{l}
\rho_{\mathbf{\prime}}+\boldsymbol{\nabla} \cdot(\rho \mathbf{u})=0 \quad \text { on } \Omega \\
\rho(0, \mathbf{x})=\rho_{0}(\mathbf{x})
\end{array}\right.
$$

where Ω is a bounded, connected, and regular open domain of \mathbb{R}^{2} [we shall assume $d \mathbf{x}(\Omega)=1$ for simplicity]; $\mathbf{u}(\mathbf{x})$ is a given incompressible $(\nabla \cdot \mathbf{u}=0)$ velocity field in $C^{\prime}(\bar{\Omega})$ which satisfies $\mathbf{u} \cdot \mathbf{n}=0$ on $\partial \Omega$ (\mathbf{n} is the normal unit vector at the boundary $\partial \Omega)$; and $\rho(t, \mathbf{x})$ is a scalar function.

It is well known that for any given $\rho_{0}(\mathbf{x})$ in $L^{\infty}(\Omega)$, the equation ($\left.\mathscr{T}\right)$ has a unique weak solution $\rho(t, \mathbf{x})$ given by $\rho(t, \mathbf{x})=\rho_{0}\left(\varphi_{t}^{-1}(\mathbf{x})\right)$, where φ_{t} is the Lagrangian flow associated to \mathbf{u} :

$$
\left\{\begin{array}{l}
\frac{d}{d t} \varphi_{r}(\mathbf{x})=\mathbf{u}\left(\varphi_{t}(\mathbf{x})\right) \\
\varphi_{0}(\mathbf{x})=\mathbf{x}
\end{array}\right.
$$

[^0]Since \mathbf{u} is incompressible, $\varphi_{1}: \Omega \rightarrow \Omega$ conserves the Lebesgue measure $d \mathbf{x}$.
We denote by Φ_{t} the flow on $L^{\infty}(\Omega)$ defined by (\mathscr{T}) :

$$
\rho(t, \mathbf{x})=\left(\Phi_{1} \rho_{0}\right)(\mathbf{x})
$$

We will investigate here the long-time behavior of this flow. It is easily observed that besides some degenerate cases (mainly the case where \mathbf{u} is the velocity field of a solid-body rotation), the solution of (\mathscr{T}) undergoes small-scale oscillations and converges (in a weak sense), when t goes to infinity, toward some final state. We will give here a mathematical proof. of the convergence of the flow, and show that the final state is accurately described as a statistical equilibrium state, according to the theory given in ref. 2.

Although this problem is interesting in itself, it is enlightening to consider it in the context of 2D turbulence: equation (\mathscr{T}) describes the particular case of a passive scalar convected by a frozen velocity field. Our result points out a simple example where the "topological invariants" (such as the number of patches or holes) are clearly irrelevant to the long-time behavior. And we may conjecture that these invariants have no influence on the final state in the case of the 2D Euler system.

2. STATISTICAL EQUILIBRIUM STATES FOR (\mathscr{T})

As previously noticed, ${ }^{(2)}(\mathscr{T})$ belongs to a class of equations to which a statistical equilibrium theory can be applied. Therefore to any given $\rho_{0}(\mathbf{x})$ in $L^{\infty}(\Omega)$ we can associate a statistical equilibrium state which is a Young measure v^{*} (see ref. 2 and below). We will prove in the following section that, under some mild assumptions on the field \mathbf{u}, the Young measure v^{*} describes also the long-time dynamics of the system. Thus, that, in this particular case, a precise link between the long-time dynamics and the statistical equilibrium theory is established.

We refer to ref. 2 for a detailed presentation of the theory; we shall only indicate here the main recipe to get the equilibrium states.

2.1. Constants of the Motion for (\mathscr{T})

Let us denote by ψ the stream function of $\mathbf{u}[\mathbf{u}=\nabla \times(\psi \mathbf{k}), \psi=0$ on $\partial \Omega$, with \mathbf{k} the unit vector normal to the plane].

For any bounded continuous function $g(\psi, \lambda)$ on $\mathbb{R} \times \mathbb{R}$, we define the functional

$$
F_{g}(\rho)=\int_{\Omega} g(\psi(\mathbf{x}), \rho(\mathbf{x})) d \mathbf{x}
$$

One easily checks that F_{g} is conserved by the flow Φ_{t}. Indeed,

$$
F_{g}\left(\Phi_{t} \rho\right)=\int_{\Omega} g\left(\psi(\mathbf{x}), \rho\left(\varphi_{t}^{-1}(\mathbf{x})\right)\right) d \mathbf{x}
$$

We make the change of variable $\mathbf{x}=\varphi_{1}\left(\mathbf{x}^{\prime}\right)$; since ψ is the stream function of \mathbf{u}, we have $\psi\left(\varphi_{l}\left(\mathbf{x}^{\prime}\right)\right)=\psi\left(\mathbf{x}^{\prime}\right)$, so that $F_{g}\left(\Phi_{t} \rho\right)=F_{g}(\rho)$.

2.2. The Variational Problem

Let us recall a few definitions. ${ }^{(2.5)}$

- A Young measure v on $\Omega \times[-R, R]$ is a measurable mapping $\mathrm{x} \rightarrow v_{\mathrm{x}}$ from Ω into the space $M_{1}([-R, R])$ of the Borel probability measures on $[-R, R]$, endowed with the narrow topology (weak topology associated to the continuous bounded functions). We denote by \mathscr{M}_{R} the convex set of the Young measures on $\Omega \times[-R, R] ; \mathscr{M}_{R}$ is endowed with the narrow topology (of bounded measures on $\Omega \times[-R, R]$) and it is a compact space.
- To any measurable function $\rho: \Omega \rightarrow[-R, R]$ (i.e., $\rho \in L_{R}^{\infty}(\Omega)$), we associate the Young measure $\delta_{p}: \mathbf{x} \rightarrow \delta_{p(\mathbf{x})}$, the Dirac mass at $\rho(\mathbf{x})$.
- For $\rho_{0} \in L_{R}^{\infty}(\Omega)$, we define the probability distribution π_{0} on $[-R, R]$ by

$$
\left\langle\pi_{0}, f\right\rangle=\int_{\Omega} f\left(\rho_{0}(\mathbf{x})\right) d \mathbf{x}
$$

and we denote by π the Young measure such that $\pi_{\mathrm{x}}=\pi_{0}$, for all \mathbf{x}.

- For $v \in \mathscr{M}_{R}$, the Kullback information functional $I_{\pi}(\nu)$ is defined by ${ }^{(4)}$

$$
I_{\pi}(v)=\int_{\Omega} d \mathbf{x} \int \operatorname{Ln}\left(\frac{d v_{x}}{d \pi_{0}}\right) d v_{\mathrm{x}}
$$

if v is absolutely continuous with respect to π

$$
I_{\pi}(v)=+\infty \quad \text { if not }
$$

Let us suppose now that $\delta_{\Phi_{1}, p_{0}} \rightarrow v$ (when $t \rightarrow+\infty$) in the space \mathscr{M}_{R}, so that

$$
\int_{\Omega} f\left(\mathbf{x}, \Phi_{t} \rho_{0}(\mathbf{x})\right) d \mathbf{x} \rightarrow \int_{\Omega} d \mathbf{x} \int f(\mathbf{x}, \lambda) d v_{\mathbf{x}}(\lambda)
$$

for any continuous bounded function $f(\mathbf{x}, \lambda)$. In particular, if we take $f(\mathbf{x}, \lambda)=g(\psi(\mathbf{x}), \lambda)$, we get

$$
\begin{equation*}
\int_{\Omega} d \mathbf{x} \int g(\psi(\mathbf{x}), \lambda) d v_{\mathbf{x}}(\lambda)=\int_{\Omega} g\left(\psi(\mathbf{x}), \rho_{0}(\mathbf{x})\right) d \mathbf{x} \tag{1}
\end{equation*}
$$

for any continuous bounded function $g(\psi, \lambda)$.
We denote by \mathscr{E} the subset of \mathscr{M}_{R} composed of the Young measures satisfying (1). \mathscr{E} is convex, compact, and nonempty.

Now, following the approach given in ref. 2, the equilibrium state v^{*} is defined as the solution of the variational problem

$$
\text { (V.P.) } \quad I_{\pi}\left(\nu^{*}\right)=\min _{v \in \mathscr{E}} I_{\pi}(\nu)
$$

Since I_{n} is a (positive) convex lower-semicontinuous functional on \mathscr{M}_{R} which is strictly convex on $\left\{v: I_{\pi}(v)<+\infty\right\}$, (V.P.) has always a solution, which is unique if I_{π} is not identical to $+\infty$ on \mathscr{E}.

We describe now the solution of this variational problem.

2.3. The Young Measure $\boldsymbol{\pi}^{\boldsymbol{\Psi}}$

The functional $g(\psi, \lambda) \rightarrow \int_{\Omega} g\left(\psi(\mathbf{x}), \rho_{0}(\mathbf{x})\right) d \mathbf{x}$ defines a Borel probability measure on $\mathbb{R} \times \mathbb{R}$, whose first projection is the image measure P of $d \mathrm{x}$ by ψ, i.e.,

$$
\int_{\Omega} g(\psi(\mathbf{x})) d \mathbf{x}=\int g(\psi) d P(\psi)
$$

Therefore, by a general theorem, ${ }^{(1)}$ there is a unique Young measure $\psi \rightarrow \zeta_{\psi}$ on $\mathbb{R} \times \mathbb{R}$, such that

$$
\int_{\Omega} g\left(\psi(\mathbf{x}), \rho_{0}(\mathbf{x})\right) d \mathbf{x}=\int d P(\psi) \int g(\psi, \lambda) d \zeta_{\psi}(\lambda)
$$

The Young measure π^{ψ} on $\Omega \times[-R, R]$ is now defined by $\pi_{x}^{\psi}=\zeta_{\psi(\mathrm{x})}$ a.e. (almost everywhere) in Ω.

Obviously π^{ψ} belongs to \mathscr{E}, and the solution of (V.P.) straightforwardly follows from the following lemma, whose proof is easy.

Lemma. Let v be any Young measure in \mathscr{E}; then we have $I_{\pi}(v)=$ $I_{\pi^{\psi}}(\nu)+I_{\pi}\left(\pi^{\psi}\right)$.

Therefore, if $I_{\pi}\left(\pi^{\psi}\right)<+\infty, \pi^{\psi}$ is the unique solution of (V.P.).

Remark. We can easily check that the condition $I_{\pi}\left(\pi^{\psi}\right)<+\infty$ is satisfied if ρ_{0} takes a finite number of values, but we do not know whether it is always satisfied. If $I_{\pi}\left(\pi^{\psi}\right)=+\infty, \pi^{\psi}$ is still a solution of (V.P.), but it is no longer unique.

3. LONG-TIME DYNAMICS

It is a general underlying assumption in statistical mechanics that the equilibrium state describes, in some sense, the long-time dynamics of the system. More precisely, we expect here that $\delta_{\Phi_{t, p_{0}} \rightarrow \pi^{\psi}}$ (when $t \rightarrow \infty$) in the space \mathscr{M}_{R}.

We prove now that this is true, under some mild assumptions on the velocity field \mathbf{u} (which mainly consists in discarding the degenerate case of a solid-body rotation).

3.1. Preliminary Assumptions on u

- The stream function ψ varies from 0 (value taken at the boundary $\partial \Omega$) to its maximum value $\psi_{m}>0$, which is reached at a unique point $\mathbf{x}^{*} \in \Omega$.
- $\nabla \psi(\mathbf{x}) \neq 0$, for all $\mathbf{x} \neq \mathbf{x}^{*}, \mathbf{x} \in \bar{\Omega}$.
- For all $\psi, 0 \leqslant \psi<\psi_{m}$, the set $\Sigma_{\psi}=\{\mathbf{x} \in \bar{\Omega}: \psi(\mathbf{x})=\psi\}$ is a closed regular curve. We denote by $d \sigma$ the superficial measure on Σ_{ψ}, and by $d \sigma_{\psi}=d \sigma /|\nabla \psi|$ the φ_{t}-invariant measure.
- We denote by $T_{\psi}=\int_{\Sigma_{\psi}} d \sigma_{\psi}$ the time needed to cover Σ_{ψ}. We assume that T_{ψ} is a regular function of ψ on the interval $\left[0, \psi_{m}[\right.$; it is integrable since

$$
\int_{0}^{\psi_{m}} T_{\psi} d \psi=\int_{0}^{\psi_{m}} d \psi \int_{\Sigma_{\psi}} d \sigma_{\psi}=\int_{\Omega} d \mathbf{x}=1
$$

We can now state our result.
Theorem. Let us assume that, besides the above assumptions, the following hypothesis (H) holds:

$$
\begin{equation*}
\left(\int_{\psi}^{\psi_{m}} T_{\psi} d \psi\right)^{1 / 2}\left|\frac{d}{d \psi}\left(\frac{1}{T_{\psi}^{2}}\right)\right| \geqslant c>0 \quad \text { for } \quad 0 \leqslant \psi<\psi_{m} \tag{H}
\end{equation*}
$$

Then, for any $\rho_{0} \in L_{R}^{\infty}(\Omega)$, we have

$$
\delta_{\Phi_{1} \rho_{0}} \longrightarrow(t \rightarrow \infty), \pi^{\psi} \quad \text { in the space } \mathscr{M}_{R}
$$

Proof. Let us first clear up the meaning of the hypothesis (H), which is a priori rather obscure. With this aim, let us take $\Omega=D\left(0, \pi^{-1 / 2}\right)$, disk of radius $\pi^{-1 / 2}$ centered at 0 , and $\psi=\psi(r)$, a radially symmetric function. Let us denote by $\alpha(r)=-\psi^{\prime}(r) / r$ the angular velocity of the motion on the circle of radius r. Elementary calculations give

$$
\alpha^{\prime}(r)=-2 \pi^{3 / 2}\left(\int_{\psi(r)}^{\psi_{m}} T_{\psi} d \psi\right)^{1 / 2} \frac{d}{d \psi}\left(\frac{1}{T_{\psi}^{2}}\right)
$$

so that (H) is written $\left|\alpha^{\prime}(r)\right| \geqslant \alpha_{0}>0$ for $0<r \leqslant \pi^{-1 / 2}$.
The proof of the theorem is in two steps. First we prove the result for a disk and a radially symmetric motion (proposition below), next we deduce the general case by an appropriate transformation.

Proposition. Let $\Omega=D\left(0, \pi^{-1 / 2}\right)$ and ψ be radially symmetric. Let us suppose that $\left|\alpha^{\prime}(r)\right| \geqslant \alpha_{0}>0$ for $0<r \leqslant \pi^{-1 / 2}$. Then for any $\rho_{0} \in L_{R}^{\infty}(\Omega)$, we have

$$
\delta_{\Phi_{1}, p_{0}} \xrightarrow[(t \rightarrow \infty)]{ } \pi^{\psi} \quad \text { in the space } \mathscr{M}_{R}
$$

Proof. Let us first remark that it suffices to show that

$$
\left\langle\delta_{\Phi_{i}, \rho_{u}}, f\right\rangle \rightarrow\left\langle\pi^{\psi}, f\right\rangle
$$

for any smooth, compactly supported $f(\mathbf{x}, \lambda)$ on $\Omega \times \mathbb{P}$.
We may now prove the result for a continuous ρ_{0} with compact support in Ω : indeed, let $\rho_{0} \in L^{\infty}(\Omega)$ and f as above; then for any $\varepsilon>0$ there exists ρ_{0}^{ε} continuous with compact support such that

$$
\left\|\rho_{0}-\rho_{0}^{\varepsilon}\right\|_{L^{\prime}(\Omega)} \leqslant \varepsilon
$$

and so

$$
\left|\left\langle\delta_{\phi_{t}, p_{0}}, f\right\rangle-\left\langle\delta_{\boldsymbol{\phi}_{t} \rho_{0}^{e}}, f\right\rangle\right| \leqslant K_{f} \varepsilon
$$

where K_{f} is the Lipschitz constant of f in the second variable, as well as

$$
\left|\left\langle\pi^{\psi}, f\right\rangle-\left\langle\pi_{\varepsilon}^{\psi}, f\right\rangle\right| \leqslant K_{f} \varepsilon
$$

with π_{c}^{ψ} associated to ρ_{0}^{e}.
We thus obtain

$$
\left|\left\langle\delta_{\phi_{1}, \rho_{0}}, f\right\rangle-\left\langle\pi^{\psi}, f\right\rangle\right| \leqslant 2 K_{f} \varepsilon+\left|\left\langle\delta_{\Phi_{t}, p_{0}^{\varepsilon}}, f\right\rangle-\left\langle\pi_{c}^{\psi}, f\right\rangle\right|
$$

From now on we suppose ρ_{0} continuous with compact support.

Let $\mathscr{A}^{m, n}$ be the following partition of $\Omega \backslash\{0\}$:

$$
\mathscr{A}^{m, n}=\left\{A_{k, j}^{m, n}, 0 \leqslant k<m, 0 \leqslant j<n\right\}
$$

where $A_{k . j}^{m, n}$ is the set of those points whose polar coordinates (r, θ) satisfy

$$
\left\{\begin{array}{l}
\frac{2 k \pi}{m} \leqslant \theta<\frac{2(k+1) \pi}{m} \\
\frac{j}{n \sqrt{\pi}} \leqslant r<\frac{j+1}{n \sqrt{\pi}}
\end{array}\right.
$$

(the first inequality on the radius being strict for $j=0$).
Define $\rho_{0}^{m, n}$ on $\Omega \backslash\{0\}$ by

$$
\rho_{0}^{m, n}(\mathbf{x})=\frac{1}{\left|A_{k, j}^{m, n}\right|} \int_{A_{k, j}^{m, n}} \rho\left(\mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime} \quad \text { if } \quad \mathbf{x} \in A_{k, j}^{m, n}
$$

and $f^{m, n}$ in the same way.
It is obvious that $\left\|\rho_{0}-\rho_{0}^{m, n}\right\|_{\infty}$ and $\left\|f-f^{m, n}\right\|_{\infty}$ both converge to 0 as m and n tend to infinity.

One easily sees that

$$
\begin{aligned}
& \left|\left\langle\delta_{\Phi_{t} p_{0}}, f\right\rangle-\left\langle\pi^{\psi}, f\right\rangle\right| \\
& \quad \leqslant\left|\left\langle\delta_{\Phi_{1}, p_{0}^{m, n}}, f^{n, n}\right\rangle-\left\langle\pi_{m, n}^{\psi}, f^{m, n}\right\rangle\right|+2\left\|f-f^{m, n}\right\|_{\infty}+2 K_{f}\left\|\rho_{0}-p_{0}^{m, n}\right\|_{\infty}
\end{aligned}
$$

For fixed m, n we shall give an upper bound for

$$
\operatorname{Limsup}_{t \rightarrow \infty}\left|\left\langle\delta_{\Phi_{t}, \rho_{0}^{m, n}}, f^{m, n}\right\rangle-\left\langle\pi_{m, n}^{\psi}, f^{m, n}\right\rangle\right|
$$

One has

$$
\begin{aligned}
\left\langle\delta_{\Phi_{t}, \rho_{0}^{m, n}}, f^{m, n}\right\rangle & =\sum_{k, j} \int_{A_{k, j}^{m, n}} f^{m, n}\left(\mathbf{x}_{k, j}, \rho_{0}^{m, n}\left(\varphi_{1}^{-1}(\mathbf{x})\right) d \mathbf{x}\right. \\
& =\sum_{i, k, j} \int_{A_{i, j}^{m, n} \cap \varphi_{t}^{-1}\left(A_{k, j}^{m, n}\right)} f^{m, n}\left(\mathbf{x}_{k, j}, \rho_{0}^{m, n}\left(\mathbf{x}_{i, j}\right) d \mathbf{x}\right.
\end{aligned}
$$

where $\mathbf{x}_{k . j}$ is any fixed point in $A_{k, j}^{m, n}$, so

$$
\left\langle\delta_{\Phi_{t} p_{0}^{m, n}}, f^{m, n}\right\rangle=\sum_{i, k, j}\left|A_{i, j}^{m, n} \cap \varphi_{t}^{-1}\left(A_{k, j}^{m, n}\right)\right| f^{m, n}\left(\mathbf{x}_{k, j}, \rho_{0}^{m, n}\left(\mathbf{x}_{i, j}\right)\right)
$$

On the other hand,

$$
\begin{aligned}
\left\langle\pi_{m, n}^{\psi}, f^{m, n}\right\rangle & =\int_{\Omega} d \mathbf{x} \frac{1}{T_{\psi(\mathbf{x})}} \int_{\Sigma_{\psi(\mathbf{x})}} f^{m, n}\left(\mathbf{x}, \rho_{0}^{m, n}\left(\mathbf{x}^{\prime}\right)\right) d \sigma_{\psi}\left(\mathbf{x}^{\prime}\right) \\
& =\sum_{i, k, j} \frac{\left|A_{k, j}^{m, n}\right|}{m} f^{m, n}\left(\mathbf{x}_{k, j}, \rho_{0}^{m, n}\left(\mathbf{x}_{i, j}\right)\right)
\end{aligned}
$$

where $|A|=d \mathbf{x}(A)$.
Hence

$$
\begin{aligned}
& \left|\left\langle\delta_{\Phi_{t}, m}^{m, n}, f^{m, n}\right\rangle-\left\langle\pi_{m, n}^{\psi}, f^{m, n}\right\rangle\right| \\
& \quad \leqslant\|f\|_{\infty} \sum_{i, k, j}| | A_{i, j}^{m, n} \cap \varphi_{1}^{-1}\left(A_{k, j}^{m, n}\right)\left|-\frac{\left|A_{k, j}^{m, n}\right|}{m}\right|
\end{aligned}
$$

We shall now use the following lemma, whose proof will be given later.
Lemma. Under the same hypotheses as in the proposition, one has

$$
\underset{t \rightarrow \infty}{\operatorname{Limsup}}\left|\left|A_{i, j}^{m, n} \cap \varphi_{t}^{-1}\left(A_{k, j}^{m, n}\right)\right|-\frac{\left|A_{k, j}^{m, n}\right|}{m}\right| \leqslant \frac{C}{n^{2} m^{2}}
$$

We deduce from this lemma that

$$
\underset{t \rightarrow \infty}{\operatorname{Limsup}}\left|\left\langle\delta_{\Phi_{1}, p_{0}^{m, n}}, f^{m, n}\right\rangle-\left\langle\pi_{m, n}^{\psi}, f^{m, n}\right\rangle\right| \leqslant\|f\|_{\infty} \sum_{i, k, j} \frac{C}{n^{2} m^{2}}=\frac{C}{n}\|f\|_{\infty}
$$

and that $\forall m, n>0$,

$$
\begin{aligned}
& \underset{t \rightarrow \infty}{\operatorname{Lim} \sup }\left|\left\langle\delta_{\Phi_{1}, p_{0}}, f\right\rangle-\left\langle\pi^{\psi}, f\right\rangle\right| \\
& \quad \leqslant \frac{C}{n}\|f\|_{\infty}+2\left\|f-f^{m, n}\right\|_{\infty}+2 K_{f}\left\|\rho_{0}-\rho_{0}^{m, n}\right\|_{\infty}
\end{aligned}
$$

which concludes the proof of the proposition.
Proof. Since $\left|\alpha^{\prime}(r)\right| \geqslant \alpha_{0}>0$, the angular velocity is either strictly increasing or strictly decreasing with the radius. It follows that $\varphi_{1}^{-1}\left(A_{k . j}^{m, n}\right)$ will swirl around the origin as t increases.

If \mathbf{x} has (r, θ) as polar coordinates, $\varphi_{t}^{-1}(\mathbf{x})$ will be represented by $(r, \theta-\alpha(r) t)$. Let us compute the area of $A_{i, j}^{m, n} \cap \varphi_{r}^{-1}\left(A_{k, j}^{m, n}\right)$. This set is a union of several connected components, all but at most two of them being "complete." The evaluation of the area of one of those $C_{r_{1}, r_{2}, r_{3}}$ (see Fig. 1) gives

$$
\left|C_{r_{1}, r_{2}, r_{3}}\right|=t \int_{r_{1}}^{r_{2}}\left|\alpha(r)-\alpha\left(r_{1}\right)\right| r d r+t \int_{r_{2}}^{r_{3}}\left|\alpha\left(r_{3}\right)-\alpha(r)\right| r d r
$$

Fig. 1. Connected component $C_{r_{1}, r_{2}, r_{3}}$ of $\varphi_{t}^{-1}\left(A_{k, 1}^{m, n}\right) \cap A_{i, 1}^{m, n}$.
Let us now suppose $\alpha(r)$ increasing (the decreasing case may be treated in the same way). Let us compute

$$
t \int_{r_{1}}^{r_{2}}\left(\alpha(r)-\alpha\left(r_{1}\right)\right) r d r
$$

Since

$$
\alpha(r)-\alpha\left(r_{1}\right)=\left(r-r_{1}\right)\left[\alpha^{\prime}\left(\frac{j}{n \sqrt{\pi}}\right)+O\left(\frac{1}{n}\right)\right]
$$

a straightforward calculation gives

$$
t \int_{r_{1}}^{r_{2}}\left(\alpha(r)-\alpha\left(r_{1}\right)\right) r d r=t \alpha^{\prime}\left(\frac{j}{n \sqrt{\pi}}\right) \frac{j}{n \sqrt{\pi}} \frac{\left(r_{2}-r_{1}\right)^{2}}{2}+O\left(t \frac{\left(r_{2}-r_{1}\right)^{2}}{n}\right)
$$

and also

$$
\begin{aligned}
& t \int_{r_{2}}^{r_{3}}\left(\alpha\left(r_{3}\right)-\alpha(r)\right) r d r \\
& \quad=t \alpha^{\prime}\left(\frac{j}{n \sqrt{\pi}}\right) \frac{j}{n \sqrt{\pi}} \frac{\left(r_{3}-r_{2}\right)^{2}}{2}+O\left(t \frac{\left(r_{3}-r_{2}\right)^{2}}{n}\right)
\end{aligned}
$$

On the other hand, from the relationships

$$
t\left(\alpha\left(r_{2}\right)-\alpha\left(r_{1}\right)\right)=\frac{2 \pi}{m}
$$

and

$$
t\left(\alpha\left(r_{3}\right)-\alpha\left(r_{2}\right)\right)=\frac{2 \pi}{m}
$$

one easily gets

$$
r_{2}-r_{1}=\frac{2 \pi}{m t \alpha^{\prime}(j / n \sqrt{\pi})}+O\left(\frac{1}{m n t}\right)
$$

and the same for $r_{3}-r_{2}$.
So

$$
\left|C_{r_{1}, r_{2}, r_{3}}\right|=4 \pi^{2} \frac{j}{n \sqrt{\pi} m^{2} t \alpha^{\prime}(j / n \sqrt{\pi})}+O\left(\frac{1}{m^{2} n^{3} t}\right)
$$

Now the number of connected components of $A_{i, j}^{m, n} \cap \varphi_{t}^{-1}\left(A_{k, j}^{m, n}\right)$ is equal to $\frac{t}{2 \pi}\left[\alpha\left(\frac{j+1}{n \sqrt{\pi}}\right)-\alpha\left(\frac{j}{n \sqrt{\pi}}\right)\right]+O(1)=\frac{t}{2 \pi} \frac{1}{n \sqrt{\pi}} \alpha^{\prime}\left(\frac{j}{n \sqrt{\pi}}\right)+O\left(\frac{t}{n^{2}}\right)+O(1)$ so that

$$
\left|A_{i, j}^{m, n} \cap \varphi_{1}^{-1}\left(A_{k, j}^{m, n}\right)\right|=\frac{2 j}{m^{2} n^{2}}+O\left(\frac{1}{m^{2} n^{5}}\right)+O\left(\frac{1}{m^{2} n^{3} t}\right)
$$

but $\left|A_{k, j}^{m, n}\right|=(2 j+1) / m n^{2}$, hence

$$
\left|\left|A_{i, j}^{m, n} \cap \varphi_{1}^{-1}\left(A_{k, j}^{m, n}\right)\right|-\frac{\left|A_{k . j}^{m, n}\right|}{m}\right| \leqslant \frac{C}{n^{2} m^{2}}+\frac{C}{m^{2} t}
$$

which concludes the lemma.
Now, to prove the theorem, we construct an area-preserving homeomorphism $\Theta: \bar{\Omega} \rightarrow \bar{D}\left(0, \pi^{-1 / 2}\right)$, which transforms the motion into a radially symmetric one.

We proceed as follows.

- We define the function

$$
r(\psi)=\frac{1}{\sqrt{\pi}}\left(\int_{\psi}^{\psi_{m}} T_{\psi} d \psi\right)^{1 / 2}
$$

- We fix an origin O_{ψ} on each streamline Σ_{ψ} such that $\psi \rightarrow O_{\psi}$ is a continuous curve.
- For $\mathbf{x} \in \Sigma_{\psi}, \Theta(\mathbf{x})$ is located on the circle of radius $r(\psi)$, with polar angle $\left(2 \pi / T_{\psi}\right) \int_{o_{\psi}}^{\mathrm{x}} d \sigma_{\psi}$.

Due to our particular choice of $r(\psi)$, we easily check that Θ is an areapreserving homeomorphism; and $\Theta\left(\varphi_{t}\right)$ gives a uniform circular motion on each circle of radius $r(\psi)$, with the angular speed $\alpha(r(\psi))=2 \pi / T_{\psi}$, from which we obtain

$$
\alpha^{\prime}(r(\psi))=-2 \pi^{3 / 2}\left(\int_{\psi}^{\psi / m} T_{\psi} d \psi\right)^{1 / 2} \frac{d}{d \psi}\left(\frac{1}{T_{\psi}^{2}}\right)
$$

The theorem then straightforwardly follows from the proposition.

REFERENCES

1. M. Jirina, On regular conditional probabilities, Czech. Math. J. 9(3):445 (1959).
2. J. Michel and R. Robert, Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law, Commun. Math. Phys. 159:195-215 (1994).
3. J. Michel, Thesis, Université Lyon 1 (1993).
4. S. R. S. Varadhan, Large deviations and applications, Ecole d'été de probabilité de Saint-Flour XV-XVII, 1985-1987.
5. L. C. Young, Generalized surfaces in the calculus of variations, Ann. Math. 43:84-103 (1942).

[^0]: ${ }^{1}$ École Normale Supérieure de Lyon, F-69364 Lyon, France.
 ${ }^{2}$ CNRS, Laboratoire d'Analyse Numérique, Université Lyon 1, F-69622 Villeurbanne Cedex, France.

